Lesson 1 - Midpoint of a segment

Definition: The point which divides a line segment into two equal parts is called the midpoint of that segment.

The coordinates of point M can be found using the following:

$$
x_{M}=\frac{x_{1}+x_{2}}{2} \quad y_{M}=\frac{y_{1}+y_{2}}{2}
$$

Ex. Given $\mathrm{A}(-1,4)$ and $\mathrm{B}(5,-2)$ find the coordinates midpoint M of $\overline{A B}$.

$$
\begin{array}{cl}
x_{M}=\frac{-1+5}{2} & y_{M}=\frac{4+-2}{2} \\
x_{M}=\frac{4}{2} & y_{M}=\frac{2}{2} \\
x_{M}=2 & y_{M}=1
\end{array}
$$

Sometimes coordinates have negative numbers:

Find the midpoint

a) $\left(\begin{array}{l}x_{1}, y_{1} \\ -2,5)\end{array} \quad\right.$ and $\left(\underline{x_{2}}, y_{2}, 15\right)$

$$
\begin{gathered}
x_{m}=\frac{-2+8}{2}=\frac{6}{2}=3 \quad y_{m}=\frac{5+15}{2}=\frac{20}{2}=10 \\
(3,10)
\end{gathered}
$$

b) $\left.\begin{array}{c}x_{1}, \\ (-4, \\ -6\end{array}\right)$ and $\left(\begin{array}{c}x_{2} \\ (-10, \\ y_{2}\end{array}\right)$

$$
\begin{gathered}
x_{m}=\frac{-4+-10}{2}=\frac{-14}{2}=-7 \quad y_{m}=\frac{y_{1}+y_{2}}{2}=\frac{-6+0}{2}=-3 \\
(-7,-3)
\end{gathered}
$$

c) $\binom{x_{2}}{0,0}$ and $(-8,8)$

$$
\begin{gathered}
x_{n}=\frac{-8+0}{2}=-4 \quad y_{m}=\frac{8+0}{2}=4 \\
(-4,4)
\end{gathered}
$$

d) $(5,4)$ and $(2,11)$

Tricky....

What if you are given the midpoint and one of the endpoints and you have to solve for the other endpoint?

$$
(-2,1) \quad(3,6) \quad(x, y)
$$

Example:

$$
\begin{aligned}
& \text { Example: } \\
& \text { The midpoint is }(3,6) \\
& x_{n} y_{m}
\end{aligned} x_{m}=\frac{x_{1}+x_{2}}{2} .
$$

$$
\begin{aligned}
& \text { The midpoint is }(3,6) \\
& \text { one endpoint is }(-2,4) \quad 2(3)=\left(-\frac{-2+x_{2}}{x}\right)^{2} \\
& x^{2} x^{2}=-2+x_{2}
\end{aligned}
$$

$$
x_{6}^{2}=-2+x_{2}
$$

What is the other endpoint?

$$
x_{2}=8
$$

Use the same steps to solve.

$$
\begin{aligned}
& y_{m}=\frac{y_{1}+y_{2}}{2} \\
& 6=\frac{4+y_{2}}{2} \\
& 12=4+y_{2} \\
& y_{2}=8
\end{aligned}
$$

Word problems.

Justin leaves his house located at $\begin{gathered}x_{1} \\ (15,20)\end{gathered}$
He walks to the store $(31,50)$
He stopped at Peter's house which is halfway to the store. What are the coordinates of Peter's house? $\quad(23,35)$

$$
\begin{aligned}
x_{m} & =\frac{x_{1}+x_{2}}{2} \\
& =\frac{15+31}{2}=23
\end{aligned}
$$

$$
\begin{aligned}
y_{m} & =\frac{y_{1}+y_{2}}{2} \\
& =\frac{20+50}{2}=35
\end{aligned}
$$

Mathew and Liborio agree to meet halfway from their homes. $\quad x_{n}=\frac{x_{1}+x_{2}}{2} \quad y_{M}=\frac{y_{1}+y_{2}}{2}$ $\begin{array}{ll}\frac{20}{1}=\frac{10+x_{2}}{2} & 55=\frac{30+y_{2}}{2} \\ 56=10+x_{2} & =\frac{12}{10}=30+y_{1}\end{array}$ Mathieu lives at $\left(\begin{array}{cc}x_{1} & 10,30) \\ 56=x_{2} & 80=y_{2}\end{array}\right.$ The midpoint is $(28,55)$

What are the coordinates of Liborio's house? (46.80)

CST4_Lesson1_Midpoint

$$
\begin{aligned}
& \text { C } \\
& a^{2}+b^{2}=c^{2} \\
& c=\sqrt{a^{2}+b^{2}} \\
& \text { ix } a=4 \quad b=6 \\
& c=7.2 \\
& \text { Ex. } \quad a=15 \quad c=20 \\
& 15^{2}+b^{2}=20^{2} \\
& b^{2}=20^{2}-15^{2} \\
& =400-225 \\
& \sqrt{b^{2}}=\sqrt{175}=13.2
\end{aligned}
$$

