Lesson 46 ~ Lateral \& Total Area
Right Prism, Right Pyramid \& Right Cylinders
Area of Right Prisms
The given right prism, with height h, has a rectangular base with dimensions \qquad L and \qquad -

The area of the \qquad Lateral Faces is called the \qquad .
\qquad
The lateral area is equal to the product of the perimeter of the base $\frac{P_{b}}{b}$ and the height \qquad h _ of the prism.

Formula
Lateral Area of Right Prism

$$
A_{L}=P_{b} h
$$

$$
\begin{aligned}
A_{L} & =P_{b} h \\
& =5(4)(6) \\
& =20(6) \\
& =120 \mathrm{~cm}^{2}
\end{aligned}
$$

\square

The sum of the areas of the 2 bases and the lateral area is called th Total Area

Formula
Total Area of Right Prism

$$
\begin{aligned}
& A_{T}=A_{C}+A_{b}+A_{b} \\
& A_{T}=A_{L}+2 A_{b}
\end{aligned}
$$

Example

$$
\begin{aligned}
A_{T} & =A_{L}+2 A_{b} \\
& =120+2\left(5^{2}\right) \\
& =120+2(25) \\
& =120+50 \\
A_{T} & =170 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of Right Regular Pyramid
The lateral area \qquad of the pyramid is equal to half of the product of the perimeter of the base \qquad P_{6} and the slant height SH of the pyramid.

Formula
Lateral Area of Pyramid

$$
\text { Example } \begin{aligned}
A_{L} & =\frac{P_{b}(S H)}{2} \\
& =\frac{(5)(4)(3)}{2} \\
& =\frac{60}{2}=30 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
A_{L}=\frac{P_{b}(5 H)}{2}
$$

The total area \qquad of the pyramid is equal to the sum of the area of the base \qquad and the lateral area \qquad .

Formula
Total Area of Pyramid

Example $A_{7}=A_{C}+A_{b}$

$$
=30+5^{2}
$$

$$
=30+25
$$

$$
A_{T}=55 \mathrm{~cm}^{2}
$$

$$
A_{T}=A_{L}+A_{b}
$$

Area of Right Circular Cylinders

The cylinder on the right has a height of \qquad and radius of \qquad .

The net of this cylinder is composed of

- 2 discs
- 1 rectangle (lateral face)

The cylinder's lateral area \qquad A_{t} is equal to the product of the perimeter of the base \qquad ${ }^{P_{b}}$ and the height of the cylinder \qquad .

Formula Lateral Area of cylinder

$$
\begin{aligned}
A_{L} & =P_{b} h \\
& =2 \pi r h
\end{aligned}
$$

$$
\text { Example } \begin{aligned}
A_{L} & =2 \pi r h \\
& =2(3.14)(3)(7) \\
& =10.84(7) \\
& =131.88 \mathrm{~cm}^{2}
\end{aligned}
$$

The cylinder's total area $A_{\text {_ }}$ is equal to the sum of the areas of the 2 bases and the cylinder's lateral area \qquad -.

Formula
Lateral Area of cylinder

$$
\begin{aligned}
A_{T} & =A_{L}+A_{b}+A_{b} \\
& =2 \pi r h+2 \pi r^{2}
\end{aligned}
$$

Example

$$
\begin{aligned}
A_{\tau} & =2 \pi r h+2 \pi r^{2} \\
& =131.80+2(3.14)\left(3^{2}\right) \\
& =131.88+56.52 \\
& =188.4 \mathrm{~cm}^{2}
\end{aligned}
$$

