Measures of Central Tendency

Mean - the average

Ex: Math grades (all worth the same amount)

$$
91,68,72,86,60
$$

To calculate the mean, add them up and divide by the number of data values:

$$
\text { Mean }=\frac{(91+68+72+86+60)}{5}=75.4
$$

Mean of a Frequency Distribution

Ex.

Value (x)	Frequency (F)	$F^{\bullet} x$
1	3	
2	5	
3	1	
4	7	
5	4	
$\sum F X=$		

NB: $\quad \sum$ means sum of.
$\bar{x}=\frac{\text { Sum of } F x}{\text { Sum of } F}=\frac{\sum F x}{\sum F}=$
$\bar{x}=$
$\bar{x}=$

Mean of Data grouped into classes

If the data are grouped into classes, then the mean is calculated using the midpoint of each class multiplied by the frequency.

Ex. The heights of 40 students are shown below. Find the average height.

Height (cm)	Frequency
$[140,150[$	5
$[150,160[$	17
$[160,170[$	12
$[170,180[$	4
$[180,190[$	2

Midpoint (x)	Frequency (F)	$F^{\bullet} \times$
145	5	
155	17	
165	12	
175	4	
185	2	

$$
\Sigma F=\quad \Sigma F_{X}=
$$

$\bar{x}=\frac{\text { Sum of } F x}{\text { Sum of } F}=\frac{\sum F x}{\sum F}=$
$\bar{x}=$

Weighted Mean

If the values are not worth the same amounts, the mean is called the weighted mean.

Ex. A Math course has 3 terms and each term is worth :

Term	Grade (\%)	Weight (\%)
1	70	20
2	72	30
3	80	50

Final grade $=$

Median - the middle number
(when all values are in increasing order)

- Case 1 - an odd number of data

561010111515
Use the formula $(\boldsymbol{n}+1) / 2$ formula; where \boldsymbol{n} is the number of data, to determine the LOCATION of the median.
$\frac{(7+1)}{2}=4^{\text {th }}$ number $\rightarrow 561010111515$

- Case 2 - an even number of data

323846495052
Use the formula $(n+1) / 2$ formula; where \boldsymbol{n} is the number of data, to determine the LOCATION of the median.

$3.5^{\text {th }}$ number

Since the median is in between two number, take the average of the two numbers on either side of the line.

$$
\frac{(46+49)}{2}=47.5
$$

Median of Data grouped into classes

The class that contains the median is called the median class.
The middle value of the median class can be used an estimate of the median.

Ex.

Height (cm)	Frequency
$[140,150[$	5
$[150,160[$	17
$[160,170[$	12
$[170,180[$	4
$[180,190[$	2

$$
\frac{n+1}{2}=
$$

Mode - the most frequent data value
Ex. $2595829538468282 \quad \Rightarrow 82$ is the mode

- If we would have added another 95 , there would have been two modes or bimodal (82 \& 95)
- If every number shows up only once, there is NO MODE
- If the data are grouped into classes, then the class with the highest frequency is called the modal class

Ex. The heights of 40 students are shown below.

Height (cm)	Frequency
$[140,150[$	5
$[150,160[$	17
$[160,170[$	12
$[170,180[$	4
$[180,190[$	2

The modal class is [150, 160[

Range - is not a measure of central tendency

Range $=$ Largest $\boldsymbol{N u m b e r}-$ Lowes \dagger Number

Ex. 2595829538468282
$95-25=70$ The range is 70 .

Stem and Leaf Plot

Can be used to represent one or two distributions.
The center column is the STEM; it indicates the first digit(s) of the data values

Each line has the LEAVES; the last digit of each data value Ex: Heartbeats of 30 individuals

70737376788182858587888889
909292969799101101101104106106107
112114115118
Cardiac rates (beats/min)

Stem								
7 0 3 3 6 8 8 1 2 5 5 7 8 8 9 9 0 2 2 6 7 9 10 1 1 1 4 6 6 7 11 2 4 5 8								

Or you can see TWO distributions on one table:
Ex. Lengths of male and female salmon (in millimetres)

Practice

Textbook 1:

P. 73 \#1, 3, 4 \& 5
P. 74 \#6 \& 7

