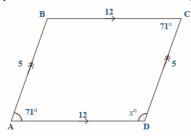
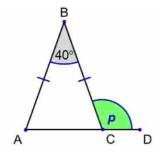

Interior Angles of Triangles & Polygons

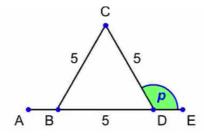
Equilateral Triangles:

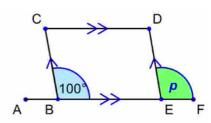
3 identical sides and angles

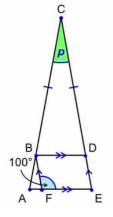

Each angle will always measure _____

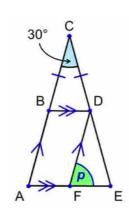
<u>Isosceles Triangles:</u> 2 identical sides and angles

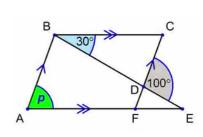


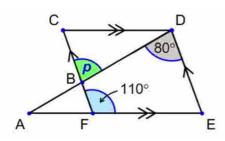

Rhombus & Parallelogram

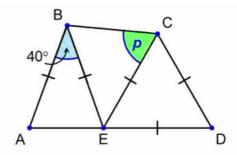

The angles that are diagonally oppose each other are always equal

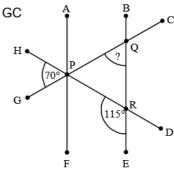


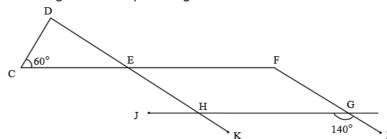

EXAMPLES: Find the value of "p" for each diagram below










 In the figure on the right: Line segments AF, HD and GC intersect at point P.

$$\overline{AF} / / \overline{BE}$$

What is the measure of angle PQR?

2. Given triangle CDE and parallelogram EFGH below.

Match each statement with its appropriate reason.

Statements

Reasons

1. m ∠JHK = 140°

A) The sum of the angles in a triangle is 180°.

2. m ∠DEF = 140°

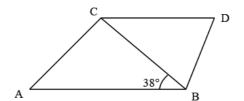
- B) Vertically opposite angles are equal.
- 3. $m \angle DEC = 180^{\circ} 140^{\circ} = 40^{\circ}$
- C) Supplementary angles on a straight line.

4. m ∠D = 80°

D) Corresponding angles in parallel lines are congruent.

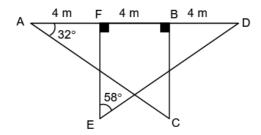
Statement (#)	Reason (letter)

E) Alternate exterior angles in parallel lines are congruent.

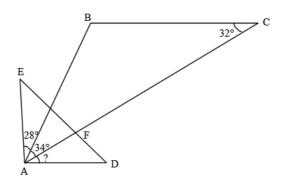

3. In the figure on the right,

$$\overline{AB}$$
 // \overline{CD}

BC is a transversal


$$m \overline{BC} = m \overline{CD}$$

$$m \angle ABC = 38^{\circ}$$



Show that the measure of angle BDC is 71°.

4. Prove that segments BC and FE in the diagram below are congruent.

5. Triangles ABC and DAE, shown below, are similar.

What is the measure of angle DAF?