Dealing with OVERLAPPING TRIANGLES

Many problems involving similar triangles have one triangle ON TOP OF (overlapping) another triangle.

Here we have $\triangle BDE$ and $\triangle BAC$

In this case line segments DE and AC are shown to be parallel--note the arrows on the line segments.

so, we know that <*BDE* is congruent to <*DAC* (by corresponding angles).

<*B* is shared by both triangles

so the two triangles are similar by AA

Parallel Line to a Triangle's Side: Any line parallel to a triangle's side determines two similar triangles.

sides are proportional

Corollary: Any two similar triangle determine parallel lines.

Segment Joining the Midpoints of Two Sides in a

Triangle: Any segment joining the midpoints of two sides in a triangle is parallel to the third side and is half the measure of this third side.

In triangle ABC

If: AD = DB, AE = EC

Then: DE // BC

 $\overline{DE} = \frac{1}{2} \overline{BC}$

Thales' Theorem: Two intersecting transversal lines intersected by parallel lines are separated into corresponding segments of proportional length.

