1. The parabolic trajectory (path) of a ball thrown from Pat to Chris is illustrated in the Cartesian diagram below. The maximum height reached by the ball is 4 m .
Which of the following rules of correctly defines this parabola?
A) $y=x^{2}-8 x$
B) $y=-4 x^{2}+2 x$
C) $y=-0.25 x^{2}-2 x$
D) $y=-0.25 x^{2}+2 \mathrm{x}$
2. What is the equation (rule) of the second-degree function that has a range of $(-\infty, 4]$ and is positive for $x \in]-1,3[$?

3. What are the zeros of the function $f(x)=x^{2}-2 x+1$?
4. In a Cartesian plane, function f is represented by a parabola. Point $\mathrm{P}(-7,172)$ is one of the points on this parabola, and point $\mathrm{V}(3,-8)$ is its vertex. What is the rule of function f ?
5. In a Cartesian plane, function f is represented by a parabola. The zeros of function f are 10 and 20 , and its minimum is -75 . What is the rule of function f ?
6. The following graph represents the side view of the path of a dolphin as it performs a trick during a show at an aquarium. This path is composed of portions of two parabolas associated with function f and g respectively. The scale of the graph is in metres. The rule $f(x)=\frac{5}{9}(x-3)^{2}-5$ represents the dolphin's path when it is in the water. When it is out of the water, the dolphin reaches a maximum height of 4 metres. The distance between points A and C is 10 metres. What is the rule of the function g ?

7. Determine the equation of the second-degree function associated with the description provided.
a) The vertex is located at $V(3,2)$ and the graph passes through the point $P(4,3)$.
b) The two zeros are -3 and 1 and $f(-1)=2$.
c) The equation of the axis of symmetry is $x=-1$. The maximum is 2 and the graph passes through the point $P(4,-123)$.
d) The only zero of the function is -2 and $f(-1)=-1$.
e) Points $P(-1,7), Q(-9,7)$ and $R(-3,1)$ are on the parabola representing the function.
f) The y-intercept is greater than or equal to the zeros, which are -1 and 5 .
