## Rate of Change

In the previous example the 5 transformed the $x$ (or we could say is the relationship between the $x$ and $y$ )

We call this number the rate of change (ROC)
The symbol for the ROC is a

The ROC is the rate at which a changes $x$

You can calculate ROC using any two points on a line and the formula:

$$
\begin{aligned}
& a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x} \\
& \left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right)
\end{aligned}
$$

## Finding the Rate of Change

Step 1: Write down the coordinates of two points and label them.

$$
\binom{x_{1}}{1,4}(2,7)
$$

Step 2: Write down the formula and plug in the numbers.

$$
a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-4}{2-1}=\frac{3}{1}=3
$$

Step 3: Calculate the ROC


Ex. Find the R.O.C. given $\left.\begin{array}{c}x_{1} \\ (-3,4)\end{array}\right)$ and $\left(\begin{array}{l}x_{2} \\ (3,7)\end{array}\right.$

$$
a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-4}{3-(-3)}=\frac{7-4}{3+3}=\frac{3}{6}=\frac{1}{2}=0.5
$$

Rule for Linear Relations

Every linear relation can be written using the rule:


Ex. Find the rule for the following graph.

$$
\begin{aligned}
& N \rightarrow 2 \\
& \begin{array}{ll}
x_{1}, y_{1} \\
4,9) & \left(\begin{array}{l}
x_{2} \\
7
\end{array}, 15\right)
\end{array} \\
& a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{15-9}{7-4}=\frac{6}{3}=2 \\
& y=2 x+1
\end{aligned}
$$

