

The signs of a and b determine 4 cases:

$$a > 0$$
 and $b > 0$

$$a > 0$$
 and $b < 0$

$$a < 0$$
 and $b > 0$

$$a < 0$$
 and $b < 0$

Ex.:
$$f(x) = 3\left[-\frac{1}{2}(x-1)\right] + 2$$

We have:
$$a = 3$$
; $b = \frac{-1}{2}$; $h = 1$ and $k = 2$.

- Each step has a length of $\frac{1}{|b|} = 2$.
- The counterstep height is a = 3.
- $-\operatorname{dom} f = \mathbb{R}$
- $\operatorname{ran} f = \{ y \mid y = 3m + 2, m \in \mathbb{Z} \}$
- zeros of $f: \tilde{f}$ has no zeros since k is not a multiple of a.
- y-intercept of f: 2,
- $-f(x) > 0 \text{ if } x \le 1; f(x) < 0 \text{ if } x > 1$
- f is decreasing over \mathbb{R} , since ab < 0.
- f has no extrema.

Represent the following functions and determine the set S of zeros.

a)
$$f(x) = 2\left[\frac{1}{2}(x-1)\right] - 2$$

b)
$$f(x) = -2\left[\frac{1}{2}(x+1)\right] + 2$$

$$S = [3, 5[$$

c)
$$f(x) = \left[-\frac{1}{3}(x-1) \right] + 3$$

S =]7, 10]

d)
$$f(x) = -2[-(x-2)] + 1$$

$$S = Q$$

The following rules define greatest integer functions. Write them in the form y = a[b(x-h)] + k.

a)
$$y = [2x - 1] + k$$
.
 $y = [2(x - \frac{1}{2})]$

b)
$$y = -2[3x - 6]$$
 $y = -2[3(x - 2)]$

c)
$$y = \left[\frac{x-3}{2}\right]$$
 $y = \left[\frac{1}{2}(x-3)\right]$

Which geometric transformations apply the basic greatest integer function to the following functions?

a)
$$f(x) = [x - 5]$$
 Horizontal translation of 5 units to the right.

b)
$$f(x) = [x] + 2$$
 Vertical translation of 2 units upward.

c)
$$f(x) = [x + 3] - 1$$
 Horizontal translation of 3 units to the left, followed by a vertical translation of one unit downward.

d)
$$f(x) = -[x-2]$$
 Horizontal translation of 2 units to the right, followed by a reflection about the x-axis.

e)
$$f(x) = [-2x]$$
 Horizontal scale change followed by a reflection about the y-axis.

- **4.** For each of the following greatest integer functions, determine
 - 1. the length of one step and its type $(\bullet \circ)$ or $(\circ \bullet)$.
 - 2. the counterstep height.
 - 3. the set S of zeros.
 - 4. the *γ*-intercept.
 - 5. the variation of the function.

a)
$$y = 2[-3(x-1)] + 4$$

b)
$$y = \left[\frac{1}{2}(x+1)\right] + 6$$

1. length:
$$\frac{1}{3}$$
; \circ —•

1. length:
$$\frac{1}{3}$$
; $0 - \bullet$

3.
$$S = \left[\frac{4}{3}, \frac{5}{3}\right]$$

b)
$$y = \left| \frac{1}{2}(x+1) \right| + 6$$

length: 2; •••

3.
$$S = [-1, 1[$$

c)
$$y = 3[2(x+1)] - 5$$

1. length:
$$\frac{1}{2}$$
; $\bullet - \circ$

d)
$$y = \frac{1}{2}[-4(x+1)] + 2$$

1. length:
$$\frac{1}{4}$$
; \circ

2. height:
$$\frac{1}{2}$$

$$S = \left| -\frac{1}{4}, 0 \right|$$

Determine the domain and range of the following functions.

a)
$$y = -3[5(x+2)] - 7$$

$$dom = \mathbb{R}; ran = \{y \mid y = -3m - 7, m \in \mathbb{Z}\}$$

b)
$$y = \frac{1}{2}[-3(x-1)] + 4$$

$$dom = \mathbb{R}; ran = \{y \mid y = \frac{1}{2}m + 4, m \in \mathbb{Z}\}$$

- **6.** Find the set of values of x for which
 - 1. $f(x) \ge 0$.
 - a) f(x) = 3[3(x-1)] + 2
 - 1. $x \in [1, +\infty[$
 - 2. $x \in [-\infty, 1[$

1. $x \in]-\infty, -3[$

2. $x \in [-3, +\infty[$

- 2. f(x) < 0. b) $f(x) = -3\left[\frac{1}{3}x + 2\right] + 6$
 - 1. $x \in J-\infty$, 3[
 - 2. $x \in [3, +\infty[$
- d) $f(x) = 3\left[\frac{-1}{2}(x+2)\right] 4$
 - 1. $x \in]-\infty, -6]$
 - 2. $x \in]-6, +\infty[$
- Consider the function $f(x) = 2\left[\frac{1}{2}(x-1)\right] + 3$ represented on the right.
 - a) Represent the function $g(x) = 2\left[\frac{1}{2}(x+1)\right] + 1$.

What do you notice?

The graph of g coincides with the graph of f.

b) Find the rule of a function h with the same graph as f.

For example, $h(x) = 2 \left[\frac{1}{2} (x+3) \right] - 1$

8. For each of the step functions represented below, find a rule corresponding to the function.

 $y = \left[\frac{2}{3}(x-1)\right] + 1$

a contraction of the contraction

 $y=-3\left[\frac{1}{2}(x+1)\right]-1$

d)

- To motivate his salesmen, a sales manager awards a bonus of \$100 for every \$1000 in sales.
 - a) Draw the Cartesian graph of the function which gives the awarded bonus y as a function of the amount of sales x.
 - b) What is the rule of the function? $y = 100 \left| \frac{x}{1000} \right|$ (x

- A salesman receives a weekly base salary of \$150 and a \$50 bonus for every \$1000 in weekly sales.
 - a) Find the rule of the function which gives the weekly salary y as a function of the amount x of weekly sales.

$$y = 50 \left| \frac{x}{1000} \right| + 150$$

- b) A salesman sells \$12 480 of merchandise in a week. What will his salary be? \$750
- c) For what amount of sales will the salesman receive a salary of \$1000?

An amount within the interval [17 000, 18 000[

d) Is it possible for a salesman to receive a salary equal to \$825?

$$50 \left[\frac{x}{1000} \right] + 150 = 825 \Leftrightarrow \left[\frac{x}{1000} \right] = 13.5$$

The last equation has no solution since $13.5 \oplus \mathbb{N}$.

- The cost y, in dollars, of mailing a package depends on its mass x, in grams. This cost is defined by the rule $y = -2.5 \left[-\frac{x}{100} \right]$.

 - b) What is the mass of a package that costs \$12.50 to mail? $x \in [1400, 500]$
 - c) Explain in your words how to calculate the cost of mailing a package.

 It costs \$2.50 for 100 g or less and \$2.50 more for every additional 100 g.
- At a parking lot, the cost y of parking is calculated as follows: a minimum cost of \$2 for a parking time of less than 30 min. In addition, \$1.50 is charged for every 30 minute interval of parking time.

- a) Draw the graph of the function which gives the total cost y, in dollars, of parking as a function of the parking time x, in hours.
- b) Find the rule of the function. y = 1.5[2x] + 2

c) What is the parking time corresponding to a cost of \$8?
$$x \in [2, 2.5]$$

126