

What is happening on the graph when two lines intersect?

In other words...

What do you notice about the x and y values for both lines? $\frac{1}{2}$

Special cases

Coinciding lines are 2 lines that share the same equation

ex:
$$y = 2x + 6$$

 $\frac{2y}{2} = \frac{4x}{2} + \frac{12}{2} = 7$ $y = 2x + 6$

These lines are ALWAYS intersecting

in fact they are the same line : \sim solutions

Parallel lines never intersect

Parallel lines are.....

lines that have the same slope : Ø soln

Oct 26-10:19 PM

- 1- Sometimes we can read the coordinates on the graph, like we just saw
- 2-Sometimes we need a table of values

What is the values of x and y where both lines are at the same point?

Sep 19-9:39 AM

3- Sometimes, we must solve it using algebra....

there are 3 ways of solving algebraically:

1 - Comparison method:-when both equations are in function form

$$y = ax + b$$

Ex.
$$y = 2x + 7$$

 $y = -x - 5$

Set the right side of the two equations equal to each other

We can do that because we are finding the value of x for both when the y value is the same for both.

Sep 19-9:50 AM

$$2x + 7 = -x - 5$$
 solve for x

$$2x + x = -7 - 5$$
 combine like terms
 $3x = -12$
 $x = (-12)/3 = -4$

Answer (-4, Y)

We still need to find y - so plug -4 into one of the equations (ie replace x with -4)

$$y = 2x + 7$$

 $y = 2(-4) + 7$
 $y = -8 + 7$
 $y = -1$

Verify with the other equation:

$$y = -x - 5$$

 $y = -(-4) - 5$
 $y = +4 - 5$
 $y = -1$

Sep 19-9:57 AM

The final answer

$$(-4, -1)$$

Does this make sense?

Let's graph the lines and see

Ex.1 Solve the following system:

$$y = -x + 11$$

 $y = 0.5x + 2$
 $-x + 11 = 0.5x + 2$
 $-1.5x = -9$
 -1.5
 $x = 6$

② Plug.+n:
$$y = -(6) + 11 = 5$$

③ Check: $y = 0.5(6) + 2 = 5$ (6,5)

Sep 30-4:10 PM

Ex.2 Solve the following system:

$$y = 3x - 6$$

 $y = x - 2$
 0 $y = y$
 $3x - 6 = x - 2$
 $2x = 4$
 $x = 2$
 $2x = 4$
 $x = 2$
 $(2, 0)$

Ex.3 Solve the following system:

$$y = 1.5x + 7$$
 $y = -x - 3$
 $y = -3x - 3$
 $y = -3x - 3$
 $y = -3x - 3$
 $y = -4$
 $y = -3x - 3$
 $y = -4$
 $y = -3x - 3$
 $y = -4$
 $y = -4$
 $y = -4$
 $y = -4$

Sep 30-4:10 PM

2 - Substitution method

Sometimes one equation is in function form and one is not....

$$Ax + By = C$$

$$y = ax + b$$

$$Ax + B(ax + b) = C$$

Sep 19-10:10 AM

$$9x + 30 = 18$$

$$y = 2x + 6$$
Ionely y

Replace the y in the first equation with what the <u>lonely</u> y is equal to

$$9x + 3(2x + 6) = 18$$

multiply 3 into the brackets...

$$9x + 6x + 18 = 18$$

combine like terms

$$15x = 18 - 18$$

$$15x = 0$$

Divide by 15

$$x = 0/15 = 0$$

$$x = 0$$

Sep 19-10:39 AM

$$9x + 3y = 18$$

$$y = 2x + 6$$

$$x = 0$$

What is Y?

$$9(0) + 3y = 18$$

 $0 + 3y = 18$
 $3y = 18$
 $y = 6$

Now what?

Sep 19-10:46 AM

Verify with the second equation...

$$y = 2x + 6$$
= 260 + 6 = 6

(0,6)

$$6 = 2(0) + 6$$

 $6 = 6$ True

Final answer: (0,6)

3 - Elimination Method

If the equations are both in general form then use elimination method (also called addition)

$$Ax + By + C = 0$$

or perhaps it might look like...

$$Ax + By = C$$

(ie. x and y are on the same side of the equation)

Be sure to line up all the like terms so they are above/below each other

Ex.
$$6x + 2y = 10$$
$$-2x + 2y = 2$$
$$8x = 8$$

Look at the values in front of the y

They have the same coefficient... (2) We want to eliminate y when we add the 2 equations so we want them to have opposite signs

Sep 19-10:06 AM

$$6x + 2y = 10$$
 What can we do?
 $-2x + 2y = 2$

multiply one of the equations by -1 which will simply change all the signs

Sep 19-10:10 AM

$$6x + 2y = 10$$

 $2x + -2y = -2$

Now, add them up

Sep 19-10:16 AM

Find Y
$$6x + 2y = 10$$

$$-2x + 2y = 2$$
Use the first equation
$$6(1) + 2y = 10$$

$$6 + 2y = 10$$

$$2y = 4$$

$$y = 2$$

$$x = 1$$
 y = 2
Answer (1,2)
Verify with the second equation

$$6x + 2y = 10$$
 $-2x + 2y = 2$

$$-2(1) + 2(2) = 2$$

$$-2 + 4 = 2$$

$$2 = 2 \quad \text{true}$$
the final answer: (1,2);)

Sep 19-10:29 AM

If the coefficients are different we need to multiply one or both equations to make the cofficients of ONE of the variables the same.

Ex. Solve the following system:

3. Solve the following system:
$$5 (3x - 2y = 2) \Rightarrow 15/(-10) = 10$$

$$3 (5x - 5y = 10) \Rightarrow 15/(-10) = 30$$

$$5/(5x - 10) \Rightarrow 20$$

Oct 29-1:25 PM

Homework

- P. 169 #1
- P. 171 #3
- P. 172 #4 & 5
- P. 176 #6