EXPONENTIAL FUNCTION

Remember BEDMAS

Do the EXPONENT $1^{\text {st }}$

Goal:

calculate values that are depreciating and appreciating in an exponential function

- find the rule of an exponential function from a graph.

When the value of y is INCREASING

Words that mean it is increasing: increasing, growing, appreciating, appreciation, interest

Example: St Hubert has a population of 50000 people. If the population is increasing a rate of 2% per year, how many people will there be in 5 years.

$$
\left\{100 \%_{0}+2 \%_{0}=102 \%_{0}=\frac{102}{100}=1.02\right.
$$

Start: 50000
Keep: $1+2 \%=1.02$ Time: \qquad $2 \%=\frac{2}{100}=0.02$ $y=$ start x keep ${ }^{\text {time }}$

$$
y=50000 \times\left(\frac{1.02}{5}\right.
$$

$=55,204$.

$50000 \times 2 \%=1000$
$50000+5(1000)=55,000$
Pop $50000+1000=51,00$
$2^{\text {nd }} 51000+1020=52,020$
$3^{\text {rd }} 52020+10409: 53060$

Example: A bacteria triples every hour. If there were 25 bacteria to begin with, how many bacteria will there be in 2 days.

Start: \qquad Keep: \qquad Time: $2(24)=48$ $y=$ start x keep ${ }^{\text {time }}$ 40

$$
y=25 \quad *
$$

$$
x \quad 3)
$$

$$
\begin{array}{ll}
1.99 \times 10^{24} & 1^{(3)} 25(3)=75 \\
2^{04} 75(3)=225
\end{array}
$$

$1,990,000,000,000,000,000,000,000$.

When the value of y is DECREASING

Words that mean it is decreasing: depreciation, decreasing

Example: My Porsche cost $\$ 112000$ brand new. How much will it be worth in 8 years if its value depreciates by 15% every year?

$$
100 \%-15 \%=\frac{95 \%}{100}=0.05
$$

Start: \qquad Keep: $\downarrow-0.15=0.85$ Time: 8
$y=$ start x keep ${ }^{\text {time }}$ 8 $y=112000 * 0.85)$

$$
=30,518.94
$$

Example: My PK Subban rookie card cost $\$ 50$ brand new. How much will it be worth in 8 years if its value depreciates by 15% every year?

Start: \qquad
$\mathrm{y}=$ start \mathbf{x} keep ${ }^{\text {time }}$

$$
\begin{aligned}
y & =50 \\
& =13.62
\end{aligned}
$$

Ex. Each year the frog population of a small wooded area declines by 5% in contrast to the previous year. If this wooded area has 2000 frogs, how many frogs will be present in 10 years from now?

S: 2000

$$
k: \quad 1-0.05=0.95
$$

$T: 10$

$$
\begin{aligned}
y & =2000(0.95)^{10} \\
& =1197 .
\end{aligned}
$$

Ex. Among the options available to finance a purchase, credit cards are the ones that have the highest interest rates. If Diane makes a purchase worth $\$ 1200$ with a credit card that has an interest rate of 1.5% each month, how much will she pay in interest if she can only clear her card a year later?

$$
S: 1200
$$

$\begin{aligned} K: 1+1.5 \% & =1+0.015=1.015 \\ 1007+1.5 \% & =\frac{101.5}{100}=1.015\end{aligned}$

T: lyre $\times 12=12$ months
$y=1200(1.015)^{12}$
$=1434.74$
Interest $=1434.74-1200=\$ 34.74$

Dec 15-10:23 AM

Ex. Samuel is looking at making some investments to save for the future. His investment advisor has suggested a Mutual Fund that grows at an annual interest rate of 8% per year. If Samuel invested $\$ 5000$ in the fund,
a) How much would his investment be worth after 5 years?
b) How long would it take Samuel's investment to double in value?
\% 10,000
a) $S: 5000$
$K: \quad 1+8 \%=1+0.08=1.08\left(100 \%+8 \%=\frac{108 \%}{100}=1.08\right)$
$T: 5$
$T: 5$

$$
\begin{aligned}
y & =\text { start }(\text { keep })_{5}^{t i m e} \\
& =5000(1.00)^{5} \\
& =7346.64
\end{aligned}
$$

b) 5:5000

K: 1.08

$T: x$
$y: 10000$

after 9 years

Ex. Farah purchased a new car five years ago for $\$ 25000$ and the car has depreciated in value by 15% per year. She would like to sell the car today in order to purchase a used vehicle for $\$ 10000$. The used car she is intending to purchase is anticipated to retain 90% of its previous year's value each year.
a) If Farah sells the original car, will she have the $\$ 10,000$ she needs to purchase the used car? Yes
S: 25000
K: $1-15 \%=1-0.15=0.85$

$$
y=25000(0.85)^{5}
$$

T: 5
b) If Farah intends to sell the used car when it is wort \$656. how long will she own it for?

Dec 15-10:38 AM

Ex. If the population of rabbits doubles every 4 months, when will there be 5000 rabbits if there were only 2 rabbits.

1. A community of 90 penguins increase in population by 4% per year. Which of the following equations could be used to determine the population in the future?
2. Jim bougt a cottage a few years ago. He has been analyzing the water in the well every year.

$$
f(x)=16(1.5)^{x}
$$

In 2012, there were 54 bacteria. In what year will there be more than 200 bacteria for the first time?
3. A lab technician notes that the number of type A bacteria doubles every hour whereas the number of type B bacteria triples every hour. At the outset there are 1000 of type A bacteria and 500 of type B bacteria. Which of the two bacteria will be more numerous after five hours?
4.

