Workbook

P. 190

#1

- a) x = 6
- b) x = 10
- c) x = 6

- d)
- x = 7
- e) x = 6
- f) x = 6

P. 191

#2

- a) $x = 146^{\circ}$
- b) $x = 115^{\circ}$
- c) $x = 25^{\circ}$

- d) $x = 52^{\circ}$
- e) $x = 10^{\circ}$
- f) $x = 43^{\circ}$

#3

- a) \overline{AH}
- b) \overline{AM}
- c) The right bisector of \overline{BC}
- d) The bisector of angle B
- e) 30°

#4

- $m \angle ABC = m \angle ACB = 60^{\circ}$, since triangle ABC is equilateral.
 - $m\angle OBC = m\angle OCB = 30^{\circ}$, since \overline{BO} and \overline{CO} are bisectors of angles B and C.
 - $m \angle OBC + m \angle OCB + m \angle BOC = 180^{\circ}$, since the sum of interior angles of a triangle is 180°
 - $m \angle BOC + 60^{\circ} = 180^{\circ}$ (substitution)
 - $m \angle BOC = 120^{\circ}$

P. 192

a)

#5

- 1. $\triangle AOB$ is isosceles since \overline{OA} and \overline{OB} are radii
 - 2. $\triangle AOC$ is isosceles since \overline{OA} and \overline{OC} are radii
 - 3. The sum of the interior angles of $\triangle ABC$ is 180°
 - 4. x + y represents the measure of $\angle BAC$
- b) Since 0 is the centre of the circle, we have $m \overline{OA} = m \overline{OB} = \overline{OC}$.

Since 0 is the midpoint of the hypotenuse BC, the point 0 is therefore equidistant to all three vertices

#6 $m \angle A = 60^{\circ}$