Workbook

P. 207 #9

Statement	Justification
1. <i>AD</i> // <i>BC</i>	ABCD is a trapezoid (hypothesis)
2. ∠ <i>ADI</i> ≅ ∠ <i>IBC</i>	AIA formed by the transversal line BD through parallel lines
	AD and BC.
3. ∠ <i>AID</i> ≅ ∠ <i>BIC</i>	Vertically opposite angles
4. $\triangle AID \cong \triangle CIB$	AA

P. 209

#12 a)

Statement	Justification
1. $\angle BAC \cong \angle DAE$	Vertically opposite angles
$2. \ \frac{m\overline{AB}}{m\overline{AD}} = \frac{m\overline{AC}}{m\overline{AE}}$	$\frac{2.4}{4.8} = \frac{3.6}{7.2} = \frac{1}{2} $ (corresponding sides are proportional)
3. $\triangle ABC \cong \triangle ADE$	SAS

b) The angles CBA and EDA are congruent (corresponding angles in 2 similar triangles). Lines BC and DE, intersected by the transversal line BD, determine the angles CBA and EDA that are alternate-interior and congruent. Lines BC and DE are therefore parallel by the converse of the parallel lines theorem.

P. 212

x = 8

b)
$$x = 13$$

c)
$$x = 4$$

d)
$$x = 2.8$$

P. 214

#5
$$\frac{m\overline{AB}}{m\overline{AE}} = \frac{m\overline{AC}}{m\overline{AD}} \to \frac{x+3}{x} = \frac{2x+2}{x+1} \to x = 3$$

#6 $\angle OAB \cong \angle ODC$ and $\angle ABO \cong \angle OCD$ (Alternate interior angles) $\Delta AOB \sim \Delta DOC$ (AA similarity theorem) $\frac{m\overline{OA}}{m\overline{OD}} = \frac{m\overline{AB}}{m\overline{CD}} \rightarrow \frac{2}{3} = \frac{4}{x} \rightarrow m\overline{CD} = 6 \text{ cm}$

#7
$$\frac{x+4}{x+1} = \frac{3x+2}{x+2} \to (x+4)(x+2) = (3x+2)(x+1)$$
$$2x^2 - x - 6 = 0 \to x = 2$$
$$m\overline{AB} = 6; m\overline{AC} = 8; m\overline{BC} = 10 \to Perimeter\ of\ \Delta ABC = 24u$$

#8 Height of tree = 7.5 cm.

#9
$$x = 2 cm$$

#10
$$x = m\overline{BC} = 42.4 u$$