Finding the time

Method 1: Trial and Error

Method 2: Calculator "log"

Apr 27-12:16 PM

Using your calculator to find time...

Find the **log** button: it's the inverse of exponential... working backwards

To find an exponent

Example: $2^3=8$

Log ₂8=3

On the calculator

$$\frac{\log 8}{\log 2} = 3$$

y= start *keep^{time}

isolate: keep time

time=
$$\frac{\log(\frac{y}{\text{start}})}{\log(\text{keep})}$$

Nov 30-6:22 PM

How many years before an investment of 2000 with an annual appreciation of 5% reaches \$4365.75

Rule for time
$$y=4365.75$$

time= $log(\frac{y}{start})$ start= 2000
 $log keep$ keep = 1.05
time=?

time=
$$log(y/start)/log(keep)$$

time= $log(4365.75/2000)$
 $log(1.05)$

time= 16

Nov 30-6:21 PM

Ex. Farah purchased a new car <u>five years ago</u> for \$25 000 and the car has <u>depreciated</u> in value by 15% per year. She would like to sell the car today in order to purchase a used vehicle for \$10 000. The used car she is intending to purchase is anticipated to retain 90% of its previous year's value each year.

If Farah intends to sell the used car when it is worth \$6561, how long will she own it for?

time=
$$\frac{\log(\frac{y}{\text{start}})}{\log \text{keep}}$$
 $\frac{\log(\frac{561}{y})}{\log(0.9)}$

Dec 15-10:38 AM

Ex. If the population of rabbits doubles every 4 months, when will there be 8192 rabbits if there were only 2 rabbits at the beginning?

Dec 15-10:40 AM

Ex. A community of 90 penguins increases in population by 4% per year. When will there be a population of 144 penguins?

Ex. Jim bought a cottage a few years ago. He has been analyzing the water in the well every year.

$$f(x) = 16 (1.5)^x$$

In 2012, there were 54 bacteria. In what year will there be more than 615 bacteria for the first time?

Dec 16-4:29 PM

Ex. Linda and Donny each win a lottery

Linda wins 5000 and invests it at 5% interest. Donny wins 4000 and invests it at 10 % interest

When will Donny have the same amount as Linda?

The times will match and so will the y's

$$5000(1.05)^{\text{time}} = 4000 (1.10)^{\text{time}}$$

time= $\frac{\log(\frac{y}{\text{start}})}{\log \text{keep}}$

The time when they will be the same:

time = log (start a/start b)/log (keep b/keep a)

answer: next page

Donny's Linda's

start = 5000 start = 4000

keep = 1.05 keep = 1.10

Time = log(Donny's Start/Linda's start)
log (Linda's keep/Donny's keep)

Nov 30-6:50 PM

3. A lab technician notes that the number of type A bacteria doubles every hour whereas the number of type B bacteria triples every hour. At the outset there are 1000 of type A bacteria and 500 of type B bacteria. Which of the two bacteria will be more numerous after five hours?