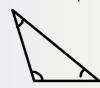

lesson 37 **April 13, 2015**

LESSON # 37 ~ Polygons

A Polygon is a closed figure formed by 3 or more line segments.



Convex Polygon is a polygon with no reflex angles.

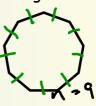
>1800

*Means that no side when you extend it can go through the polygon.

<u>Concave Polygon</u> is a polygon with <u>at least one reflex angle.</u>

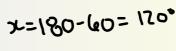
*Means when you extend one side it can go through the polygon.



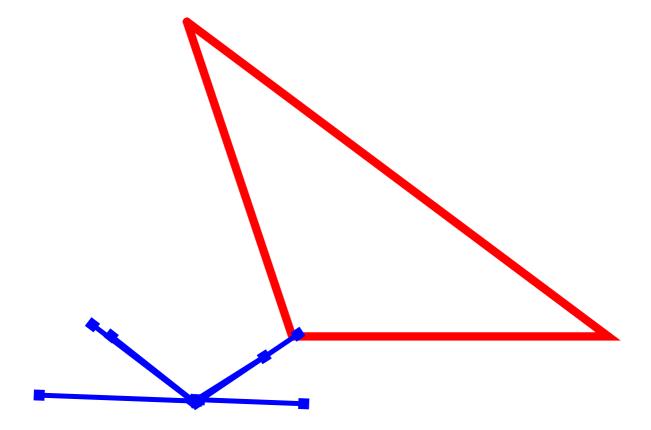

Regular Polygons are polygons with both congruent sides and angles.

To find <u>interior</u> angle measures?

 $(n - 2) \times 180^{\circ}$


formula

flash game


To find exterior angle measures ?

180 - 60,

lesson 37 April 13, 2015

Classifying Polygons

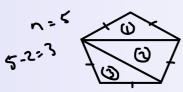
# of sides	name of polygon
3	triangles
4	quadrilateral
5	pentagon
6	hexagon
7	heptagon
8	octagon
9	nonagon
10	decagon
11	hendecagon/ undecagon
12	dodecagon

Angles

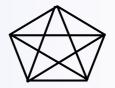
900 Acute ∠ ~ less than Mangle Mangle **Toind** Obtuse ∠ ~ between Right ∠ ~ a 90 angle Straight∠ ~ a **®**ångle

Mangle Reflex \angle ~ between wind

Vertex is the point where 2 lines meet.


To Bisect is to divide a figure into 2 congruent parts (halves).

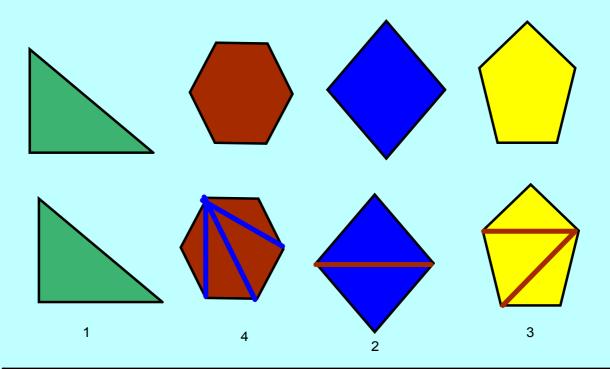
<u>Diagonal</u> is a line joining 2 non-neighbouring po



*A convex polygon with n sides can be divided into...

n-2 = #triangles (from one vertex) $\frac{1}{2}n(n-3) = \#diagonals$

how many triangles



Honework Auf Book P72-3

lesson 37 April 13, 2015

MINI-LESSON:

1. How many trianlge(s) can the polygon be divided into?

click here to find the answers

 $iMaths__3_D_Graphics.wmv$